Franzosi, DB, Cacciapaglia, G., Cai, H., Deandrea, A. & Frandsen, M. Vector and axial vector resonances in composite models of the Higgs boson. J. High energy physics. 201676 (2016).
Shimano, R. & Tsuji, N. Higgs mode in superconductors. Ann. Rev. Condens. Physics of matter. 11103-124 (2020).
Pekker, D. & Varma, C. Amplitude/Higgs Modes in Condensed Matter Physics. Ann. Rev. Condens. Physics of matter. 6269–297 (2015).
Klemenz, S. et al. The role of delocalized chemical bonding in square lattice-based topological semimetals. Jam. Chem. Soc. 1426350–6359 (2020).
Brouet, V. et al. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R = Y, La, Ce, Sm, Gd, Tb and Dy). Phys. Rev. B 77235104 (2008).
Lei, S. et al. High mobility in an antiferromagnetic metal in van der Waals layers. Science. Adv. 6eaay6407 (2020).
Podolsky, D., Auerbach, A. & Arovas, DP Amplitude (Higgs) mode visibility in condensed matter. Phys. Rev. B 84174522 (2011).
Zeilinger, A., Gähler, R., Shull, CG, Treimer, W. & Mampe, W. Single and double slit neutron diffraction. Rev. Mod. Phys. 601067-1073 (1988).
Zhang, Y., Tan, Y.-W., Stormer, HL, and Kim, P. Experimental observation of the quantum Hall effect and the Berry phase in graphene. Nature 438201-204 (2005).
Qu, D.-X., Hor, YS, Xiong, J., Cava, RJ & Ong, NP Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2You3. Science 329821–824 (2010).
Ryu, C., Samson, EC & Boshier, MG Quantum interference of currents in an atomtronic SQUID. Nat. Common. 113338 (2020).
Cleuziou, J.-P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T. & Monthioux, M. Carbon nanotube superconducting quantum interference device. Nat. Nanotechnology. 153–59 (2006).
Giazotto, F., Peltonen, JT, Meschke, M. & Pekola, JP Superconducting proximity transistor with quantum interference. Nat. Phys. 6254-259 (2010).
Mittal, S., Orre, VV, Goldschmidt, EA & Hafezi, M. Tunable quantum interference using a topological source of indistinguishable photon pairs. Nat. Photonics 15542–548 (2021).
Wall, S. et al. Quantum interference between charge excitation paths in a solid-state Mott insulator. Nat. Phys. seven114-118 (2011).
Barik, S. et al. A topological quantum optics interface. Science 359666–668 (2018).
Popescu, S. Dynamic quantum nonlocality. Nat. Phys. 6151-153 (2010).
Chang, J. et al. Direct observation of the competition between superconductivity and the order of charge density waves in YBa2Cu3O6.67. Nat. Phys. 8871–876 (2012).
Lavagnini, M. et al. Raman scattering highlights a cascade evolution of the collective amplitude mode of the charge density wave. Phys. Rev. B 81081101 (2010).
Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16159–163 (2020).
Yusupov, RV, Mertelj, T., Chu, J.-H., Fisher, IR, and Mihailovic, D. One-particle and collective-mode couplings associated with 1- and 2-way electronic ordering in metallic RTe3 (R = Ho, Dy, Tb). Phys. Rev. Lett. 101246402 (2008).
Liu, HY et al. Possible observation of parametrically amplified coherent phasons in K0.3MohO3 using time-resolved extreme ultraviolet angle-resolved photoemission spectroscopy. Phys. Rev. B 88045104 (2013).
Zocco, DA et al. Pressure dependence of charge density and superconducting wave states in GdTe3,TbTe3and DyTe3. Phys. Rev. B 91205114 (2015).
Xi, X et al. Strongly enhanced charge-density wave order in single-layer NbSe2. Nat. Nanotechnology. ten765–769 (2015).
Yoshikawa, N. et al. Ultra-fast switching to an insulator-type metastable state by amplitude excitation of a charge density wave. Nat. Phys. 17909–914 (2021).
Mohammadzadeh, A. et al. Depinning at room temperature of charge density waves in quasi two-dimensional 1T-TaS2 devices. Appl. Phys. Lett. 118223101 (2021).
Klein, MV Raman scattering theory from charge density wave phonons. Phys. Rev. B 257192–7208 (1982).
Wang, Y. et al. The range of non-Kitaev terms and fractional particles in α-RuCl3. npj Quantum Mater. 514 (2020).
Devereaux, TP & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79175–233 (2007).
Cardon, M. Scattering of light in solids 1 (Springer, 1975).
Koningstein, JA & Mortensen, OS Electronic Raman spectra IV: relationship between diffusion tensor and crystal field symmetry. J. Opt. Soc. A m. 581208 (1968).
Chen, C.-F. et al. Control of inelastic quantum pathways of light scattering in graphene. Nature 471617–620 (2011).
Rivera, P. et al. Observation of long-lived interlayer excitons in single-layer MoSe2-WSe2 heterostructures. Nat. Common. 66242 (2015).
Friedman, J. & Hochstrasser, RM Interference effects in resonance Raman spectroscopy. Chem. Phys. Lett. 32414–419 (1975).
Chen, C., Yin, Y.-Y. & Elliott, DS Interference between optical transitions. Phys. Rev. Lett. 64507-510 (1990).
Eiter, H.-M. et al. Alternative way to the formation of charge density waves in multiband systems. proc. Natl Acad. Science. UNITED STATES 11064–69 (2013).
Gray, MJ et al. A clean room in a glove box. Rev. Science. Instrument. 91073909 (2020).
Tian, Y. et al. Automated Raman microscope with variable temperature and low vibration and high numerical aperture. Rev. Science. Instrument. 87043105 (2016).
Maschek, M. et al. Soft phonon modes competing at charge-density-wave transitions in DyTe3. Phys. Rev. B 98094304 (2018).
Powell, RC Symmetry, group theory and physical properties of crystals Flight. 824 (Springer, 2010).