One of the main instruments of the Webb Space Telescope ready to see the cosmos in over 2,000 infrared colors

One of the main instruments of the Webb Space Telescope ready to see the cosmos in over 2,000 infrared colors

Animation of the James Webb Space Telescope light path

This animation shows that the path light will follow when it hits the primary mirror of the James Webb Space Telescope (JWST), and will be reflected back to the secondary, and then through the rear optical assembly where the tertiary and fine steering mirrors are located. . The light is then reflected, divided and directed towards the scientific instruments by detection mirrors. JWST is a three-mirror anastigmat telescope. Credit: NASA, ESA and G. Bacon (STScI)

A die[{” attribute=””>James Webb Space Telescope’s four primary scientific instruments, known as NIRISS, has concluded its postlaunch preparations and is now ready for science. NIRISS, which stands for Near-Infrared Imager and Slitless Spectrograph instrument, provides observing modes for slitless spectroscopy, high-contrast interferometric imaging, and imaging, at wavelengths between 0.6 and 5.0 μm over a 2.2′ x 2.2′ FOV. It will be used to investigate the following science objectives: first light detection,

This mode will be specifically used to probe the atmospheres of transiting exoplanets, i.e., planets that happen to eclipse their star periodically, momentarily dimming the star’s brightness for a period of time. By comparing the spectra collected during and before or after a transit event with great precision, one can determine not only whether or not the exoplanet has an atmosphere, but also what atoms and molecules are in it.

NIRISS Instrument Test Detector Image

The Image Behind the Spectrum. This is a test detector image from the NIRISS instrument operated in its single-object slitless spectroscopy (SOSS) mode while pointing at a bright star. Each color seen in the image corresponds to a specific infrared wavelength between 0.6 and 2.8 microns. The black lines seen on the spectra are the telltale signature of hydrogen atoms present in the star. NIRISS is a contribution from the Canadian Space Agency (CSA) to the Webb project that provides unique observational capabilities that complement its other onboard instruments. Credit: NASA, CSA, and NIRISS team/Loic Albert, University of Montreal

“I’m so excited and thrilled to think that we’ve finally reached the end of this two-decade-long journey of Canada’s contribution to the mission. All four NIRISS modes are not only ready, but the instrument as a whole is performing significantly better than we predicted. I am pinching myself at the thought that we are just days away from the start of science operations, and in particular from NIRISS probing its first exoplanet atmospheres,” said René Doyon, principal investigator for NIRISS, as well as Webb’s Fine Guidance Sensor, at the University of Montreal.

With NIRISS postlaunch commissioning activities concluded, the Webb team will continue to focus on checking off the remaining five modes on its other instruments.

Leave a Comment

Your email address will not be published. Required fields are marked *